
GRAHAM PRIEST

INCONSISTENT MODELS OF ARITHMETIC
PART I: FINITE MODELS

ABSTRACT. The paper concerns interpretations of the paraconsistent logic LP which
model theories properly containing all the sentences of first order arithmetic. The paper
demonstrates the existence of such models and provides a complete taxonomy of the
finite ones.

1. INTRODUCTION

Let A be the standard model of arithmetic. Let N be the set of first-order
sentences that hold in A. Even though N is complete, it has models other
than A. These models, the non-standard models of arithmetic, have an
interesting and well known structure.1 If M is a set of sentences that
properly contains N then M is inconsistent. This prevents it from having
any classical models (i.e., models whose underlying logic is classical). It
does not prevent it from having paraconsistent models, however. (Given
a suitable paraconsistent logic, any set of sentences has a model.) As we
will see, there are many paraconsistent structures whose sets of truths
properly contain N , and which are therefore models of it. The aim of
this paper is to discuss some of the properties of these. This part of the
paper lays out general background considerations, and then provides a
taxonomy of the finite models. The second part will look more closely
at the general case.

In the next section I will define the paraconsistent logic that will be
employed; I will state and prove the major metatheoretic fact about it
that will be applied, the Collapsing Lemma. The next two sections will
demonstrate the existence of a number of inconsistent models of arith-
metic, many of which are finite. We will then be in a position to look at
finite models in general, and in the next two sections we will do just that.

2. LOGICAL PRELIMINARIES

There are many paraconsistent logics.2 One of the simplest and most
tractable is the logic LP .3 This, at any rate, is the logic that we will
employ here. The language of logic, L, is that of classical first order log-
ic, including function symbols and identity. An LP interpretation (hence-
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224 GRAHAM PRIEST

forth, simply, ‘interpretation’), is a pair 〈D, I〉, where D is a non-empty
domain, and I assigns denotations to all the non-logical symbols of the
language. For every constant, c, I(c) is a member of D. For every n-
place function symbol, f , I(f) is an n-place function on D. For every
n-place predicate, P, I(P ) is a pair comprising the extension and anti-
extension of P . I will write these as I+(P ) and I−(P ), respectively.
I+(P ) and I−(P ) may overlap, but their union must be the set of all
n-tuples of D. The extension of the identity predicate, ‘=’, is always the
set {〈x, x〉;x ∈ D}, though its anti-extension may overlap this.

To give the truth and falsity conditions of the language we employ
the standard dodge of supposing that it is augmented with a name for
every member of D. Without loss of generality, we will take the names
to be the members of D themselves, and adopt the convention that for
every d ∈ D, I(d) is just d itself. If the interpretation is A, I will call the
augmented language LA. I can now be extended to assign every term
of LA a denotation, by the standard recursive clause: I(ft1 · · · tn) =
I(f)(I(t1) · · · I(tn)), where f is any n-place function symbol, and the
tis are its arguments. Every formula, α, of LA is now assigned a seman-
tic value, νA(α), in the set {{1}, {1, 0}, {0}}, by the following clauses.
(Truth conditions are obtained by ignoring the material in square brack-
ets; falsity conditions, by substituting it in the obvious way.) If α is
atomic, Pt1 · · · tn:

1[0] ∈ νA(α)⇔ 〈I(t1) · · · I(tn)〉 ∈ I+[−](P )

The clauses for negation, conjunction and the universal quantifier are as
follows:

1[0] ∈ νA(¬α)⇔ 0[1] ∈ νA(α)

1[0] ∈ νA(α ∧ β)⇔ 1[0] ∈ νA(α) and [or] 1[0] ∈ νA(β)

1[0] ∈ νA(∀xα)⇔ 1[0] ∈ νA
(
α(x/d)

)
for all [some] d ∈ D

Disjunction and existential quantification have the natural dual truth/falsi-
ty conditions, or can simply be taken as defined by the standard clauses:
α∨ β is ¬(α∧¬β), ∃xα is ¬∀x¬a. α ⊃ β is defined, in the usual way,
as ¬α ∨ β. If A is an interpretation, we will say that α is true [false] in
A iff 1[0] ∈ νA(a). If Σ is a set of sentences, A is a model for Σ, A � α,
iff every member of Σ is true in A.

If the extension and anti-extension of a predicate are disjoint in an
interpretation, I will call it classical. If all of the predicates of an interpre-
tation are classical, I will call the interpretation itself classical. As should
be clear, if an interpretation is classical the above truth/falsity conditions
reduce to the conditions for those of classical logic (taking its truth values
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INCONSISTENT MODELS I: FINITE MODELS 225

to be {1}, and {0}). We may therefore simply identify the interpretations
of (classical) first order logic with the corresponding classical LP inter-
pretations, an identification I make forthwith without further comment.

As usual, a sentence is an (LP ) logical truth iff every interpretation
is a model for it. In virtue of the above identification, it is clear that
every LP logical truth is a logical truth of classical first order logic.
The converse is not obvious but is, in fact, true.4 Another important fact
is as follows. Suppose that we have two interpretations. The first has
interpretation function I; the second, J . I will say that the second is an
extension of the first iff they are identical, except that for every predicate,
P , I+[−](P ) ⊆ J+[−](P ).

EXTENSION LEMMA. If B is an extension of A then everything true
[false] is A is true [false] in B.

Proof. The definition of ‘extension’ is sufficient to secure this for
atomic sentences. The result then follows by a straightforward recursion
on sentence formation.5 2

3. THE COLLAPSING LEMMA

I now want to spell out the major metatheorem about LP that will be
applied in what follows. To state it, we need a few preliminaries. Let
A, 〈D, I〉, be any interpretation, and let ∼ be any equivalence relation
on D, which is also a congruence relation on the interpretations of the
function symbols in the language, i.e.: where f is an n-place function
symbol in the language and di, ei ∈ D (1 ≤ i ≤ n), if di ∼ ei for
all 1 ≤ i ≤ n then I(f)(d1 · · · dn) ∼ I(f)(e1 · · · en). If d ∈ D, let [d]
be the equivalence class of d under ∼. We define a new interpretation,
A∼ = 〈D∼, I∼〉, called the collapsed interpretation, as follows. D∼ =
{[d]; d ∈ D}. For every constant, c, I∼(c) = [I(c)]. For every n-place
function symbol, f , I∼(f)([d1] · · · [dn]) = [I(f)(d1 · · · dn)]. (This is well
defined since ∼ is a congruence relation.) If P is an n-place predicate,
〈[d1] · · · [dn]〉 is in its extension in A∼ iff there are e1 ∼ d1, . . . , en ∼
dn, such that 〈e1 · · · en〉 ∈ I+(P ). The anti-extension of P is defined
similarly. The collapsed interpretation is, essentially, an interpretation
that identifies certain members of D (namely, all those in an equivalence
class), to produce a composite individual (the equivalence class), which
has all the properties of its members (even if these are inconsistent).

COLLAPSING LEMMA. For any formula, α, of LA, νA(α) ⊆ νA∼(α).
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Proof. To prove the lemma, we first show by a recursion on the for-
mation of terms that for any function symbol, f , and terms t1, . . . , tn,
I∼(ft1 · · · tn) = [I(ft1 · · · tn)]. The lemma is then proved by a straight-
forward recursion on the formation of sentences.6 2

The Collapsing Lemma tells us that in a process of collapse, truth val-
ues are never lost; anything true/false in the original interpretation is
true/false in the collapsed interpretation. In particular, if A � Σ thenA∼ �
Σ: if we collapse a model of a theory, we therefore produce another mod-
el. In the next section we will apply these facts to models of arithmetic.

4. INCONSISTENT MODELS: SOME EXAMPLES

Henceforth, we will fix L to be the language of arithmetic. There is one
binary predicate (identity), one constant symbol, 0, and function symbols
for successor, addition and multiplication, ′,+ and ×, respectively. (I will
boldface symbols of the language to distinguish them from the numbers
and operations themselves.) As usual, the numeral n is 0 followed by n
primes. N is the set of sentences in this language true in the standard
model of arithmetic, defined as usual.

It is easy enough to construct models of supersets ofN . Any extension
of the standard model will be one such. For example, we might just
add the pair 〈0, 0〉 to the anti-extension of the identity symbol. By the
Extension Lemma, the result is a model of N , as well as of 0 6= 0. (This
shows, incidentally, that not all inconsistent models can be obtained by
collapsing consistent models. For 1 6= 1 is not true in this model. Yet in
any collapsed model where 0 6= 0 is true, this is so because 0 has been
identified with some x > 0. But then, 1, its successor, must be identified
with x′ > 1 – since the equivalence relation is a congruence relation on
successor. Hence, 1 6= 1 is true.)

Simple extended models are not terribly interesting, however. The
Collapsing Lemma allows us to construct much more interesting models.
Let us start with a couple of special cases, already to be found in the
literature. These are both collapses of the standard model of arithmetic.

Given any number, n, identity modulo n is a congruence relation.
Collapsing by this gives the model in which i = j is true iff i = j (modn)
and i 6= j is true for every i and j (including when i is j). The behavior
of the successor function in this model can be depicted as follows:

0 → 1 → · · · → i
↑ ↓

n− 1 ← · · · ← i+ 1
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INCONSISTENT MODELS I: FINITE MODELS 227

Models of this kind are often called cyclic models, and were, in fact, the
first inconsistent models of arithmetic to be discovered.7

Another congruence relation is one which, for some n, leaves every-
thing less than n alone but identifies all numbers greater than or equal
to n. The successor function in this interpretation can be depicted thus:

0 → 1 → · · · → n →
↑ ↓
←

These are sometimes called heap models, and have been used to make
various philosophical points.8

5. LINEAR MODELS

With these initial examples in mind let us now look at a general con-
struction for collapsing. In what follows, A will be any consistent model
of N (standard or non-standard). The numbers referred to are numbers
in A. Similarly, the operations and relations referred to are those of A.
In particular, ≤, defined in the usual way – i ≤ j is ∃x(i+ x = j) – is
the canonical ordering on the members of A. Since A is a model of N ,
≤, is a linear ordering.

The following lemma of classical model-theory will be useful. If S is
an initial section of the numbers ofA closed under successor, addition and
multiplication, I will call it a slice. In any model of arithmetic, the natural
numbers clearly form a slice (in fact, this is the minimal slice), as does
the set of all numbers. I will call a slice proper if it is neither of these.

LEMMA. Let A be non-standard. If S be any slice except that of all
numbers there is a proper slice that extends S.

Proof. Let a be any number not in S. (a must therefore be non-
standard.) Consider the set M = {x; for some natural number n, x <
an}. It is easy to check that M is closed under successor, addition and
multiplication, and so is a slice. It is proper since it extends the natural
numbers, and every member of M is less than aa. (For further details,
see Kaye (1991), 6.1.) 2

Now, given A and 0 ≤ η < ω, let {Bi, i ≤ η} be a chain of strictly
increasing initial sections of the numbers in A, such that Bη is the set
of all numbers, and if 0 < i ≤ η, Bi is a slice. Note that B0 need not be
a slice. (If A is the standard model, then η is at most 1. Otherwise, by
the lemma, η may be any finite size.9)
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228 GRAHAM PRIEST

Let C0 = B0; and for 0 < i ≤ η,Ci = Bi −Bi−1. For 0 < i ≤ η let
pi be a non-zero number (possibly non-standard) such that p1 ∈ B1, and
if i < j, pi is a multiple of pj .10 We define a relation ∼ on numbers as
follows. x ∼ y iff:

(x, y ∈ C0 and x = y) or

(for some i > 0, x, y ∈ Ci and x = y (mod pi))

THEOREM. ∼ is an equivalence relation on numbers, and is a congru-
ence relation with respect to arithmetic operations.

Proof. It is not difficult to see that ∼ is an equivalence relation. We
have therefore to check only the congruence.

(Successor) Let x ∼ y. (i) Suppose that x, y ∈ C0. Then x = y.
Hence, x′ = y′, and so whatever block (i.e., Ci) x′ is in, x′ ∼ y′.
(ii) Next, suppose that i > 0, and x, y ∈ Ci. Then x = y (mod pi).
Hence x′ = y′ (mod pi). And since x′, y′ ∈ Ci, x′ ∼ y′.

(Addition) Let x1 ∼ x2 and y1 ∼ y2. (i) Suppose that either the x’s
or y’s are in C0, without loss of generality, the xs. Then x1 = x2. Thus,
wherever block x1 + y1 and x2 + y2 are, they are in the same block
(since if k > 0, Ck is closed under finite addition) and, whatever that
is, x1 + y1 ∼ x2 + y2. (ii) Next, suppose that the xs are in Ci and the
ys are in Cj where 0 < i ≤ j. Then x1 = x2 (mod pi) and y1 = y2

(mod pj). Now, since pi is a multiple of pj , x1 = x2 (mod pj). Hence
x1 + y1 = x2 + y2 (mod pj). But the sums are in Cj since this is closed
under arithmetic operations. Hence x1 + y1 ∼ x2 + y2.

(Multiplication) The argument for multiplication is essentially the
same as that for addition. 2

Any model obtained by collapsing a model under a congruence relation of
this kind I will call a linear collapsed model (for reasons that will become
clear later). Linear models have a tail, T , comprising the members of C0

(or, strictly speaking, their singletons), and then η cycles, where the
period of cycle i is pi. (Since p1 ∈ B1, each Ci(i > 0) has length greater
than pi.)

If the original model was the standard model, then η must be 0 or 1. In
the first case, collapsing just reproduces the standard model (or, strictly
speaking, its type lift). If η = 1 we have a model with a single cycle and
finite period. In fact, equivalence relations of this kind are the only non-
trivial equivalence relations on the standard model that are congruence
relations for successor, as can easily be seen. (Any non-trivial equivalence
relation must identify two distinct numbers. Let j be the least number
that is identified with another number, and k the least number greater
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INCONSISTENT MODELS I: FINITE MODELS 229

than j that is identified with it. It is a simple exercise to show that
C0 = {m;m < j} and p1 = k − j). Hence, all collapses of the standard
model are linear models. In particular, cyclic models and heap models
are special cases of linear models. In the first, C0 is the empty set; in the
second p1 = 1.

Another linear collapse is also worth noting en passant. Take any
nonstandard consistent model. Take C0 to be the finite (i.e., standard)
numbers, let η = 1 and let p1 = 1. This produces a model with a single
point at infinity, Ω, formed by identifying all the nonstandard numbers,
and depicted thus:

0 → 1 → 2 → · · · Ω →
↑ ↓
←

6. FINITE MODELS I: THE BASIC STRUCTURE

We have seen that there are a number of inconsistent models of arith-
metic, N . In the rest of this part of the paper we will have a look at
the finite ones. It will prove convenient to classify them in terms of the
graphs of their successor functions.11

Any model must have denotations for the numerals, 0, 1, 2, . . . . And
because we have a model of arithmetic, the successor function must start
off with a structure depicted as follows:

0 → 1 → · · ·

(In a natural way, I will write the denotation of n as n.) Since the model
is finite, at some stage two numerals must have an identical denotation.
Let n be the least of these, and let k be the least numeral greater than
this such that n = k is true. (Since it is a model of arithmetic, n 6= k is
also true.) Suppose that k = n + m. Then the successor graph must be
as follows:

0 → 1 → · · · → n → n+ 1
↑ ↓

n+m− 1 · · · n+ 2

In particular, let i be the numeral that is n followed by j primes. Then
the denotation of i is n+ j (modm).

So far, then, we have a structure which gives a denotation to every
numeral, and so is of minimum size. Must there be more elements in the
model? Not necessarily. We know that there are models where there are
no other elements. (E.g., linear collapses of the standard model.)

LOGID398.tex; 17/03/1997; 12:15; v.7; p.7



230 GRAHAM PRIEST

Not all finite models are of this kind, however. For example, take a
linear collapse of a nonstandard model where C0 is finite, η = 2, and p1

and p2 are finite. This gives us a structure of the kind we have just met,
followed by a second cycle. What can therefore be said about other finite
models? Let us call the objects which are denotations of the numerals
regular numbers. For the rest of this section, I shall use the letters n, m,
p, for regular numbers, and i, j, k, for irregular numbers.

Let i be any irregular number and n any regular number. Since we
have a model of arithmetic, we know that ∀x(x = 0 ∨ · · · ∨ x = n ∨ x ≥
n) is true. Since i is distinct from 0, . . . , n in the model, we must have
i ≥ n.

Now, i must have a successor, which must, in turn, have a successor,
etc. (Note that, for all we know so far, the successors may be regular
numbers.) Moreover, since ∀x(x = 0 ∨ ∃yy′ = x) is true, and i is
distinct from 0, it must have a predecessor (at least one – if more than
one, pick one, for the moment). This must itself be non-zero (since i
is not 1) and so must have a predecessor, and so on. Hence we have a
structure of the following shape:

· · · → i− 1 → i → i+ 1 → · · ·

Now let n and m be as depicted in the previous diagram, and let k be
any member of this sequence. Then k ≥ n. We know this is true for i.
If k follows i in the sequence, then k ≥ i, and the result follows, since
i ≥ n. (n + x = i and i + y = k, so n + (x + y) = k.) If k precedes
i in the sequence, k must be irregular (since the successors of regular
numbers are regular); so, again, as we have already noted, k ≥ n. Hence,
whatever k is, for some j, k = n + j. Thus, k + m = (n + j) + m =
(n+m) + j = n+ j = k. The structure is therefore a cycle, and it has a
period that is a divisor of m. In particular, each cycle comprises numbers
of the form i+ p, where p is any regular number (though these need not
all be distinct). Moreover, every member of the cycle must be irregular,
since if any were regular, the others, being its successors, would be also.

Next, any two cycles of irregular numbers are disjoint. For let i be
a number in both cycles; then its successor, its successor, and so on are
unique. This is so for all regular addends, and so both cycles are identical.
Since every two cycles are disjoint, it follows that no irregular number
has two predecessors; or otherwise, it would have to be in distinct cycles.

The general structure of a finite model is therefore a tail, plus a cycle
of regular numbers, plus a collection of cycles of irregular numbers,
such that the period of each is a divisor (not necessarily proper) of the
cycle of regular numbers. In a finite model the number of cycles must
obviously be finite. But there can be any finite number of cycles. Take
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INCONSISTENT MODELS I: FINITE MODELS 231

any non-standard model of arithmetic, and consider the linear collapse
where C0 and η are finite, and for each i each pi is finite. This gives a
finite model with η cycles.

It is important to note that the behavior of the successor function in
a model does not determine all aspects of the model. In particular, it
does not determine the behavior of the other functions, or of the identity
predicate (the only predicate). There will, therefore, be different models
with the same successor ‘shape’.

Take identity to start with. Let i be some number (regular or irregular)
in a cycle. Then we have i = i. But since i = i′···′ for some finite
sequence of primes, and it is true that ∀xx 6= x′···′, we have i 6= i also.
In any collapsed model the members of the tail behave consistently (in
particular they are identical with themselves but not distinct), since they
have not been identified with anything else. In an extension of a collapsed
model, however, any one of these can be made to behave inconsistently.

Next, consider addition. The recursive equations for addition, true
in any model of arithmetic, determine the behavior of addition for any
regular addend, since this can then be reduced by a finite number of
steps to that of the successor function; but for irregular numbers, this
is not so. In particular, then, given two models with the same successor
graph, addition may behave differently for irregular numbers in each.
I will give an example of this later in the paper. Similar comments apply
to multiplication.

7. FINITE MODELS II: CYCLE ORDERING

We have seen that a finite model comprises a number of disjoint blocks,
the tail, T , of regular numbers (which may be empty), a cycle of regular
numbers, and cycles of irregular ones. The ordering of numbers imposes
relationships of an ordering kind on the cycles themselves. A natural one
is the following. If B and C are cycles, we will say that B � C iff for
every x in B and y in C, x ≤ y.
� is obviously reflexive, and can easily be seen to be transitive.

Suppose that B � C � D. Then for any x, y, z in the respective blocks
x ≤ y ≤ z. So there are an i, j, such that x+ i = y and y + j = z. But
then x+ i+ j = z. Hence, B � D.12

� is also connected. Let B and C be any distinct cycles, and let i and
j be in B and C, respectively. Then since ∀x∀y(x ≤ y∨y ≥ x) is true,
i ≤ j of j ≥ i (or both). Without loss of generality, suppose the former.
Now, every member of C is of the form j + p for some regular p. Since
i ≤ j + p, i is less than or equal to every member of B. Conversely,
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every member of B is of the form i+ p. Now i+ p ≤ j + p, and since
C is a cycle, j+ p ≤ j. Hence, every member of B is less than or equal
to j.

As we see, then, � is a relation on a finite domain, which is connected,
reflexive and transitive. One might call this a linear preorder.

There is an important connection between � and the periodicity of the
cycles. Suppose that B � C, that B and C are cycles with periods p and
q, respectively, and that x and y are in B and C, respectively. Then for
some i, x+ i = y. Hence, y+p = (x+ i)+p = (x+p)+ i = x+ i = y.
Hence, q must be a divisor or p. (We have already noted the special case
of this when B is the cycle of regular numbers.) In particular, then, if
the cycles form a linear ordering under �, their periods must form a
sequence of (not necessarily proper) divisors.

The only models we have met so far are models where the cycles have
a simple linear order. (This is why I called them linear models.) We may
establish antisymmetry for these models as follows. Suppose that in a
linear collapsed model C � D and D � C. Let x and y be in C and D.
Then x ≤ y and y ≤ x. C and D are cycles obtained by collapsing two
blocks, say, Ci and Cj , respectively. Suppose, for reductio, that i and j
are distinct. Say, without loss of generality, that i < j. Let x, y, be [a],
[b], respectively. Since y ≤ x, for some c, [a] = [b] + [c] = [b + c]. So
b+ c is in Ci, which is impossible, since b is in Cj . Thus, i = j and so
C = D.

It is not difficult, however, to construct non-linear collapsed models.
For example, take a set-up as in the theorem of Section 5. Let 1 < i+1 <
j ≤ η; suppose that pi = pj = p, say. Let ∼ be defined as before. But
now define a relation, ≈, on the numbers as follows. x ≈ y iff:

(i) x ∼ y or

(ii) one of x, y, is in Ci, the other is in Cj,

and x = y (mod p)

THEOREM. ≈ is an equivalence relation and also a congruence relation
on arithmetic operations.

Proof. Given the properties of ∼, it is clear that ≈ is reflexive and
symmetric. Transitivity is hardly more demanding. Suppose that x ≈ y
and y ≈ z. If both arise because of clause (i), then x ≈ z since ∼ is
transitive. If both arise because of clause (ii) then x and z are in the
same block and x = z (mod p). Hence x ≈ z. If one (say the first) arises
because of clause (i) and the other arises because of clause (ii) x ≈ z
because of clause (ii).
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INCONSISTENT MODELS I: FINITE MODELS 233

It remains to check that ≈ is a congruence. Successor is trivial. Mul-
tiplication is essentially the same as addition, which is as follows. Sup-
pose that x1 ≈ x2 and y1 ≈ y2. If both arise because of clause (i) then
x1 + y1 ≈ x2 + y2 by the properties of ∼. If one (say the first) aris-
es because of clause (i) and the other arises because of clause (ii) then
x1 + y1 ≈ x2 + y2 by clause (ii). If both arise because of clause (ii) then
there are two cases. In the first, x1 and y1 occur in the same block, say
Ci, whilst x2 and y2 occur in Cj . In this case x1 + y1 is in Ci, whilst
x2 + y2 is in Cj , since the blocks are slices. In this case, the result holds
by (ii). In the second case x1 and y2 occur in the same block, say Ci,
whilst x2 and y1 occur in Cj . In this case x1 + y1 and x2 + y2 are both
in Cj , and the result holds by (i). 2

Now consider a model of arithmetic collapsed by the relation ≈. It has,
in general, a tail and a number of cycles; but now the cycles that result
from the collapse of Ci and Cj are identical. (Every member of Ci is
identified with some member of Cj and vice versa, since ∀x∀y∃z(y ≤
z ≤ y + p ∧ x = z (mod p)) and the blocks have length greater than p.)
Call this cycle C. If D is any cycle formed by collapsing a block between
Ci and Cj , we therefore have C � D � C. And hence if E is any other
such cycle, we have D � E and E � D.

In the language of graph theory, these cycles form a clique, that is,
each bears the relation� to all the others. The general structure of a linear
preorder is, essentially, that of a linear order, with some or all points
expanded to non-unit cliques.13 The above construction produces only
one non-unit clique, of size j− i− 1. But it is clear that, in combination
with an appropriate choice of η and its family of p’s, it could be used to
produce any finite number of cliques of any finite size. In other words,
the order-type of the blocks in a finite model can be any (finite) linear
preorder.

Given the connection between cycle ordering and periods, all the
cycles in a clique have the same period. Thus we may speak of the period
of a clique itself to mean the period of all the cycles in it. Moreover,
again, it is clear that by a judicious choice of η and its family of p’s, we
can construct a collapsed model in which the sequence of cliques has
periods of any non-ascending sequence of divisors.

Let me conclude this section by providing an example of models
with the same successor graph, but with different addition functions.
Take a linear collapse with, say, three cycles, and consider the last of
these. Because this is obtained from the collapse of the end-section of
the model, it is not difficult to see that the addition of any number to
a number in that cycle gives a number in the same cycle. Now take a
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non-linear model with the same tail and cycles, but in which the cycles
form a clique. Let x be any member of a cycle, and y a member of a
different cycle. Then since x ≤ y, there must be a z such that x+ z = y.
Hence, the addition functions in these two models behave differently.

8. CONCLUSION

We have now charted the structure of the finite models. For summary,
let me state what that is. Any finite model has a tail and cycle of regular
numbers. The tail may be empty, and the cycle’s period can be any
positive finite number. There is then some finite number (including zero)
of cycles of irregular numbers. The set of all cycles is linearly preordered.
Any linear preorder is possible. Finally, the periods of the cliques of the
preorder can be any non-ascending sequence of divisors.

I finish this part of the paper with a couple of open questions about
finite models.

1. It is clear that the number of models of each finite cardinality is
finite. Hence, the total number of finite models is countable. For each
finite cardinal, n, how many models of cardinal n are there?

2. All the finite models that we have seen are constructed by collapsing
classical models – or at least, by collapsing them and then extending the
collapse. Are all the finite models to be obtained in this way?

In the second part of this paper, we will turn to inconsistent models
in general, and look at their structure.14

NOTES

1 See, for example, Boolos and Jeffrey (1974), Ch. 17, or Kaye (1991), Ch. 6.
2 See Priest, Routley and Norman (1989), especially the introduction to Part 2.
3 See Priest (1987), Ch. 5.
4 For a proof, see Priest (1987), Ch. 5.
5 A similar result is proved as Proposition 2.10 of Mortensen (1995).
6 For details, see Priest (1991), Sec. 7. A very similar result is proved in Dunn (1979).
7 See Meyer (1978). See, further, Meyer and Mortensen (1984), and Mortensen (1995),

Ch. 2. Their models also model various properties of a non-extensional connective, →,
but this is not pertinent here.

8 See van Bendegem (1993) and Priest (1994).
9 The following theorem clearly generalises to infinite ηs. However, this generalisation

is unnecessary here.
10 I use ‘p’ here because these numbers are going to be periods, not because they are

primes: they need not be.
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11 The material in this section owes much to a number of interchanges with Greg
Restall. His ideas are certainly present in it.

12 For the record, if T is the tail and C any cycle, then we also have T � C. T is
obviously � the cycle of regular numbers; and we already know that for any regular m
and irregular i, i ≥ m. That is, if B is a cycle of irregular numbers T � B. However,
we obviously do not have T � T unless T = {0}.

13 For if � is a linear preorder, consider the relation C ≡ D, defined as C � D and
D � C. This is an equivalence relation; the order inherited by the equivalence classes
is a linear order, and the classes are cliques.

14 This part of the paper was read at the logic seminar of Indiana University. I am
grateful for many interesting comments to those present, including Jon Barwise, Mike
Dunn, Anil Gupta, David McCarty, Larry Moss and, especially, Jerry Seligman. I am
also grateful to Greg Restall for written comments.
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